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A device for continuous in vivo monitoring of glucose concentration in people with diabetes has been a clinical and research

priority for many years but now has an urgency which is probably unquestioned in diabetes care. The purpose of this article

is to explain recent advances in technology that are bringing glucose sensors closer to routine use and to highlight some of

the remaining problems. Important new technologies include artificial receptors for glucose, tissue fluid sampling

techniques, and new approaches to non-invasive sensing, such as fluorescence lifetime measurements.

This is a selective overview that concentrates on research of
the past five years, which we have assembled largely through
personal experience and research in the specialty and from
recent international workshops and meetings.

The need for in vivo glucose monitoring
The main reason for developing in vivo glucose sensors is for

the detection of hypoglycaemia in diabetes. Patients with insulin
dependent (type 1) diabetes have always feared low blood
glucose concentrations,1 especially during the night, when self
monitoring of blood glucose concentration with finger prick

methods cannot be performed, and those without warning
symptoms (hypoglycaemia unawareness) are especially vulner-
able.2 But automatic hypoglycaemia detection has become a
major goal for glucose sensing research since it became clear
that strict blood glucose control is usually accompanied by a
clearly increased frequency of hypoglycaemia.3 It is simply very
difficult indeed to achieve and maintain near normoglycaemia in
people with type 1 diabetes without incurring the penalty of
potentially dangerous low blood glucose concentrations.

One example of the major clinical benefit of hypoglycaemia
detection with an implantable glucose sensor can be seen by
studies that have shown that falls in tissue concentrations of
glucose (measured by a sensor) often precedes the fall in blood
glucose and may act as an early warning to the patient of
impending hypoglycaemia.4

The notion that an in vivo glucose sensor might be coupled
via a computer to a portable insulin infusion pump to create an
artificial endocrine pancreas controlled by feedback is appealing,
of course. Indeed, a glucose sensor is a prerequisite for a totally
implantable artificial pancreas5 but such systems have been put
to one side for the moment as an ambition for routine manage-
ment. Safe delivery of insulin in this way will require glucose sen-
sors that have proved totally reliable after many years of “open
loop” testing. We are far from being at or near that stage.

Implanted sensors and their problems
At first sight the task seems simple enough. A well

established laboratory chemistry technique for measuring
glucose concentration can be immobilised on a probe that is
implanted in the tissues (say, subcutaneously), with the signal
relayed to a meter outside the body by wire, fibre optic, or
telemetry. Reagentless probes or “biosensors” for measuring
glucose in vitro were first described in the 1960s6 and glucose
sensors first tested in vivo in animals the early 1970s.7 Biosen-
sors were indeed among the most promoted technologies of the
1980s, with the expectation of numerous applications in clinical
analysis.8

Summary points
One of the main reasons for developing in vivo glucose

sensors is the detection of hypoglycaemia in people with insulin
dependent (type 1) diabetes

Until recently, research and development largely focused
on needle-type glucose sensors (enzyme electrodes) implanted
in the subcutaneous tissue. Problems of calibration and drift
have delayed clinical application, but one device for trend
monitoring is now being commercialised and is entering
practice

Several new approaches will accelerate development of in
vivo glucose sensors, including totally implanted sensors with
more robust artificial glucose receptors. These might be
interrogated from outside the body by measurement of changes
in near infrared fluorescence intensity or decay lifetime

Tissue fluid sampling and extraction techniques—such as
microdialysis and reverse iontophoresis—enable glucose to be
measured outside the body under more controlled conditions
but need further development

Non-invasive glucose sensing will maximise acceptance by
patients and overcome biocompatibility problems of implants.
Near infrared spectroscopy has been most investigated but the
precision needs to be improved for eventual clinical application

1BMJ VOLUME 319 13 NOVEMBER 1999 www.bmj.com

 on 2 June 2006 bmj.comDownloaded from 

http://bmj.com


The most studied glucose sensors are of the type called
“amperometric enzyme electrodes” (fig 1), in which the enzyme
glucose oxidase is immobilised at a charged electrode and glu-
cose concentrations monitored by the change in current flow
caused by the enzyme catalysed production of hydrogen
peroxide9–11 or, less often, by the consumption of oxygen.12 A
modification of enzyme electrode technology is now well estab-
lished in some commercial devices for self monitoring of finger
prick samples for blood glucose concentration (for example,
MediSense) and has been applied to in vivo sensing.13

Usually the sensor is configured as a fine needle or flexible
wire, with the active sensing element at or near the tip, and
implanted in the subcutaneous tissue. Such sensors are
regarded as “minimally invasive” and their subcutaneous
implantation avoids the problems of septicaemia, fouling with
blood clot, and embolism, which are potentially associated with
intravascular placement.

There were initially encouraging test results with needle type
sensors over a few days in animals and humans,9 13–16 but clinical
development has been slow. A device based on this technology
(MiniMed) has recently received approval as a trend monitor to
supplement finger prick blood glucose measurements; there is
as yet no direct readout of blood glucose by the patient but play-
back of data after 72 hours via a computer for review by a phy-
sician. Why has progress been difficult with this technology? The
glucose concentration in the subcutaneous interstitial fluid
recorded from implanted sensors9–16 or measured by another
technique such as microdialysis17 is indeed proportional to the
blood glucose concentration under most circumstances, and
some sensors give excellent estimates of glycaemia for up to a
week or so in both animals and humans. But the sensor output
in vivo is suppressed by a variable amount compared with the in
vitro signal at the same glucose concentration,18 19 thus requiring
careful calibration procedures, and, importantly, the output can
drift unpredictably.14 15 The basis of these erratic responses is
unclear and has prevented rational modifications of sensors. The
present evidence favours a reversible coating of the implanted
sensor or the diffusion into the sensor of low molecular weight
inhibitors of the sensing mechanism (which can be washed off
after explantation), but the chemical nature of the interference is
unknown.

New strategies for improving implanted glucose sensors
Industrial mass production techniques ensure reproduc-

ibility of sensor construction and functionality, and, in addition,

other approaches are being used to improve the performance of
subcutaneous glucose sensors.

Microperfusion
This aims to control the microenvironment at the sensing

site by using slow, open flow perfusion of isotonic buffer over the
tip of the electrode.20 The thin, mobile aqueous film may provide
a protective barrier, wash away inhibiting molecules or cells, or
hydrate the tissues.

Totally implanted sensors
Part of the rationale behind totally implanted sensors is that

short term, transcutaneous implantation of needle-type sensors
induces a wound response with acute inflammation, changing
protein, fluid, and cellular accumulation, and thus resulting in
variable concentrations of glucose and oxygen. This may contrib-
ute to the instability of these sensors. In contrast, long term
implantation induces an encapsulating foreign body response,
and there is some evidence that this may be a more stable
sensing environment. Glucose sensors totally implanted in the
subcutaneous tissue of dogs were inactive for the first few days,
unstable for the next 7-14 days, and then became relatively
stable for the subsequent several weeks, though still not
sufficiently so for clinical use.21

Abiotic glucose receptors
Artificial alternatives to enzymes as glucose recognition

molecules are being sought because they may not be affected by
in vivo interferences and may be more robust for long term
implantation. One of the most promising techniques for creating
artificial receptors is called “molecular imprinting” or “plastic
antibodies” (fig 2).22 Here, monomers that have chemical groups
that interact with a template molecule related to the analyte are
polymerised around the template, the template is then removed,
leaving a polymer that is specific in shape and binding capacity
for the analyte. An example for glucose sensing uses the
interaction at alkaline pH between a metal ion complex and glu-
cose, which releases hydrogen ions on glucose binding.23 A
porous polymer specific for glucose has been made whereby
glucose concentration can be measured by titratable release of
protons.

Fluorescence technologies
Another approach to artificial glucose receptors uses

fluorescent molecules—such as the compound produced by the
coupling of the fluorescent dye, anthracene, to boronic acid,
which covalently but reversibly binds to two of the hydoxyl groups

+700 mV

Platinum wire

Inner membrane

Outer membrane Glucose oxidase

Glucose oxidase
Glucose + O2 Gluconic acid + H2O2

+700 mV
H2O2 O2 + 2H+ + e-

Fig 1 Typical construction of enzyme electrode for glucose sensing. Glucose
oxidase is immobilised at platinum anode. Inner membrane—such as
cellulose acetate—filters interfering substances, and outer
membrane—such as polyurethane—controls diffusion of glucose and
improves biocompatibility. Hydrogen peroxide produced by glucose oxidation
is detected electrochemically

Imprinted polymer

Polymerisation

Functional
monomer

Functional
monomer

Template

Template
removal

Analyte of
interest binds

Fig 2 Principle of molecular imprinting for generating artificial glucose
receptors. Monomers have groups that interact with analogue of analyte
(glucose). This acts as template during polymerisation. Removal of template
leaves robust polymer that binds analyte of interest
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on glucose.24 With this receptor, a change in fluorescence inten-
sity occurs on glucose binding.

Fluorescence measurements are particularly well suited to
totally implanted sensors because dyes might be used that can
be excited and emit light in the near infrared region of the light
spectrum, and as infrared light passes through several centime-
tres of tissue, such probes can be inserted in the subcutaneous
tissue and both activated and interrogated from outside the
body. Techniques for measurement of fluorescence decay
lifetimes with pulsed light sources have several advantages for in
vivo sensing over the more usual measurements of fluorescence
intensity, including easier calibration because the lifetime is not
notably affected by changing concentrations of the fluorescent
label or by photobleaching or light scattering in the tissues.
Extremely sensitive techniques (such as time correlated, single
photon counting) exist for monitoring fluorescence lifetime
changes.25

An example of a useful fluorescence technique is “fluores-
cence resonance energy transfer” (FRET), which relies on the
transfer of excitation energy from one fluorescent molecule (the
donor) to another nearby molecule (the acceptor) that has over-
lapping spectral properties. Changes in fluorescence intensity or
lifetime are reporters of the changing distance between the
donor and acceptor (for example, receptor and ligand; fig 3).
Model FRET schemes have been described for glucose sensing
in vitro with the glucose binding lectin concanavalin A coupled to
near infrared fluorescent molecules.26 27

Conformation change in a protein on binding substances
can also be sensed when the label is an environmentally sensi-
tive fluorophore (fig 4). Molecular engineering techniques are
being used in this respect for the rational adaptation of proteins
to produce new molecules with modified functions more suited
to sensing. For example, environmentally sensitive fluorescent
groups have been incorporated into allosteric proteins such as
the glucose binding protein from Escherichia coli.28 This protein
undergoes a large conformational change on glucose binding
that can be transduced into a change in fluorescence in the
engineered protein.

Tissue sampling
A possible way of overcoming the biocompatibility problems

of implanted sensors entails transport of tissue fluid outside the
body for more controlled assay. Microdialysis is the most popular
and has undergone considerable testing over a few days in
humans.29–31 A probe containing a hollow dialysis fibre is inserted
in the subcutaneous tissue and perfused at a slow rate with

isotonic fluid so that glucose diffuses into the fibre and is
pumped outside the body for online assay—for example, by an
enzyme electrode. By perfusing the fibre at a high and low rate
with glucose solution and comparing the glucose concentration
in the emerging dialysate, the absolute tissue glucose
concentration can be calculated, compensated for system drift.32

“Reverse iontophoresis” is another sampling technology in
which transdermal extraction of interstitial fluid is achieved by
applying current to two electrodes mounted on the skin
surface.33 34 Glucose is carried to the surface by electro-osmotic
flow of water. Possible problems are the time it takes to collect
sufficient fluid for analysis (15-20 minutes), the low glucose
concentrations in the extracted fluid (about 1/1000 of those in
blood), variable flux of glucose across the skin, and the effects of
prolonged use at one skin site; but considerable research and
development is under way aimed at commercialisation as a
watch-type device with integral electrochemical determination of
extracted glucose (Cygnus Inc).

Completely non-invasive glucose sensing
There is no doubt that acceptance by patients will be at an

optimum and bioincompatibility problems overcome by
completely non-invasive approaches to glucose sensing.35

Near infrared spectroscopy
This is the most studied non-invasive technology.36 37

Between about 600 and 1300 nm there is a so called “optical
window” in tissues that are transparent to light in this spectral
region. Absorption readings can be made by transmission or
reflectance through or at tissues such as the finger tip37 or oral
mucosal surface.38 39 The glucose absorption peaks are small but
with readings at several wavelengths for many known glucose
concentrations, complex multivariate techniques produce
calibration models with good correlations between reference
blood glucose and predicted glucose concentrations, both in
vitro and in vivo. The precision, however, is presently not good
enough to use this technology clinically. There may be many
reasons for this, including unpredictable spectral variations that
are not related to glucose but to factors such as tissue hydration,
blood flow, temperature, light scattering (and thus the optical
pathlength), overlapping absorption by non-glucose metabolites
and a particularly strong absorption by water in the near infrared
region, and movement artefact caused by changes in the align-
ment of the instrumentation. Research is now focused on under-
standing these variables in more detail.

Light scattering
An alternative non-invasive glucose sensing technology

uses changes in light scattering in the tissues40 41 and is based
on the dependence of scattering in turbid suspensions on the
ratio of the refractive indices of the particles (cells, membranes,
fibrils, etc, in the case of tissue) to the solution (plasma, inter-
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Subcutaneous
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Excitation Fluorescence
NIR

Dextran

Con A Con A

A
D

Glucose

FRET FRET

A
D

Fig 3 Glucose assay with fluorescence resonance energy transfer (FRET)
technology. Concanavalin A (Con A) competitively binds glucose and sugar
polymer, dextran. FRET occurs between Con A labelled with fluorophore
donor (D) and dextran labelled with an acceptor (A). Displacement of
dextran by glucose reduces FRET and increases fluorescence intensity and
lifetime. Use of near infrared dyes allows excitation and fluorescence
recording from outside body (NIR=near infrared fluorescence)
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Fig 4 Glucose assay with protein labelled with environmentally sensitive
fluorophore (F). Glucose binding alters protein conformation and changes
fluorescence (increase or decrease, depending on specific fluorophore)
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stitial fluid) in which they are suspended. The increase in refrac-
tive index of the plasma and interstitial fluid as glucose
concentration increases lowers the scattering coefficient by
about 1% for each 5 mmol/l change—that is, the tissue
becomes slightly more transparent. Substantial variations, how-
ever, are observed in the magnitude of the scattering change for
a given glucose change within and between individuals.41 Much
the same influences of temperature, tissue hydration, and probe
alignment may apply here as do for near infrared spectroscopy,
making immediate clinical application difficult.

Photoacoustic spectroscopy
This is less investigated. Pulsed infrared light is absorbed by

molecules such as glucose and leads to thermal expansion and
the generation of an ultrasound wave that is detectable at the
skin surface by a piezoelectric microphone.42 Encouraging results
have been obtained in blood samples and in vivo in a small
number of diabetic and non-diabetic people,43 but results of
extended clinical studies are awaited.

Conclusion
Problems with minimally invasive transcutaneous sensors

have encouraged research on methods for tissue sampling and
non-invasive technologies. These last range from totally
implanted sensors that can be interrogated from outside the
body—for example, by measuring fluorescence changes—to
optical techniques for complete non-invasive monitoring. It is
unlikely that only one technology for glucose sensing will be in
use by the next generation of diabetic patients; more probably a
range of devices will find clinical application, including
transcutaneous implants used for a day or so at a time—the first
in vivo glucose sensors to be commercialised, totally implanted
sensors for long term use in selected people, and, perhaps the
last to enter clinical practice but the most sought after,
completely non-invasive glucose monitors.
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Some minimally invasive and non-invasive sensors for in vivo glucose
monitoring in diabetes
Transcutaneous needle-type enzyme electrodes
Totally implanted sensors
• Enzyme electrodes
• Near infrared fluorescence based
Sampling technologies
• Microdialysis
• Reverse iontophoresis
Non-invasive technologies
• Near infrared spectroscopy
• Light scattering
• Photoacoustic spectroscopy
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